Créer un émail fourrure de lièvre : 2ème partie

Je me mets au travail après mes recherches dans la 1ère partie

Avant tout je rappelle le principe de ce blog. Je décris en direct ce que j’applique, sans filtre, au quotidien. Il exprime mon univers de céramiste dans lequel je cherche, doute souvent et trouve… parfois. A toi de compléter avec ta propre expérience.

Essais en pratique

1/ Conversion des formules

Je vais commencer par recréer l’engobe John’s SG 12 et l’émail rouille Hamada pour essayer d’obtenir ce résultat…

… obtenu en théorie par application de 3 couches d’engobe John’s SG 12 au dessous de 2 couches d »émail rouille Hamada

La recette de l’engobe JOHN’S SG-12 est donnée ci-dessous:

L’engobe: JOHN’S SG-12 Cone 10-11 Oxydation

Cendre d’os 2,06%
Dolomie 5,53
Talc 3,08
Craie 1,73
Custer Feldspath 38,03
Red Art Clay 40,12
Kentucky Ball Clay 9,46
100,00
Ox. Fer Rouge 4,50
Rutile 1,00

Il faut la convertir avec des matériaux dont je dispose car je  n’ai pas: Custer Feldspath, Red Art Clay et Kentucky Ball Clay.

Grace à Glazy calculator , je trouve en substitutionBall Clay 39,8%, Feldspath potassique 28% et Feldspath sodique 12% . Cela donne une formule proche de SG-12 avec 5% de moins de silice.

JOHN’S SG-12 -DP05: formule modifiée 

Cendre d’os 2,06%
Dolomie 5,53
Talc 3,08
Craie 1,73
Feldspath potassique 28,00
Feldspath sodique 12,00
Ball Clay 39,8
100,00
Ox. Fer Rouge 4,50
Rutile 1,00

Vérification des paramètres dans Glazy:

JOHN’S – SG12

DP05:  JOHN’S – SG12 modifié

La comparaison dans Glazy me satisfait:   ratio R2O1: RO et SiO²:Al2O3 voisins,  SiO2 et Al2O3 plus faible pour DP05. La concentration en KNaO, CaO et MgO est proche. Celle en fer est la même. Les deux recettes correspondent au diagramme 36 de D. de Montmolin, bien positionnées dans la partie droite du diagramme. La formule modifiée DPO5 devrait être un peu moins brillante

La couverte: Rouille HAMADA

Même processus, recherche de la recette Hamada, puis conversion avec des matériaux disponibles

Recette Hamada:

Recette Hamada modifiée DP1

Vérification des paramètres:

Recette Hamada:

Recette Hamada modifiée DP1

La recette modifiée a un peu moins d’oxyde de baryum, un peu plus de K2O et moins de CaO. Sensiblement la même pour les autres paramètres.

Le rendu brillant devrait être préservé, ci-dessous le diagramme de Stull:

2/ Préparation de la gamme d’essais

Base SG12-DP05 en dessous en engobe

–  variations de rutile (1-2-3%)

– puis variations de Fer Rouge (2-4-6-8-10-12%)

– enfin variations d’épaisseur (2-3 couches)

Hamada DP1 par dessus en couverte :

-avec variations d’épaisseur (1-2-3 couches)

Ensuite, échantillonnage et numérotation des essais

-> SG12-DP05: Rutile 0/1/2% et Oxyde de Fer Rouge : 2/4/6/8/10/12%

-> Hamada-DP1: Concentration en Oxyde de Fer Rouge fixe à 4,8%

Variations des épaisseurs: 2 ou 3 couches pour SG12-DP05 et Hamada-DP1

Commençons par un essai sur 6 tessons, pour voir !

Tableau 1 SG12- DP05 Hamada-DP1
Rutile 0 1 2 0
Oxyde de Fer Rouge 6 6 6 4,8
Tableau 2 N couches SG12-DP05 N couches Hamada-DP1
Tesson N°1

Rutile 0

Fer rouge 6%

Dos 3 4
Face 2 3
Tesson N°2

Rutile 0

Fer rouge 6%

Dos 3 4
Face 2 3
Tesson N°3

Rutile 1%

Fer Rouge 6%

Dos 3 4
Face 2 3
Tesson N°4

Rutile 1%

Fer Rouge 6%

Dos 3 3
Face 2 3
Tesson N°5

Rutile 2%

Fer Rouge 6%

Dos 3 3
Face 2 3
Tesson N°6

Rutile 2%

Fer Rouge 6%

Dos 3 4
Face 2 3

3/ Faire des tessons

Tournage des tessons puis découpage

J’ai pris du grès de St-Amand lisse (GSA) et du grès rouge de Doublet

Après séchage pendant 2 jours, cuisson à 980°C

4/ Préparer les deux bases

Je prépare 500g de chaque base en pesant les différents matériaux qui les composent. Pour SG12-DP05, je n’ajoute pas l’oxyde de fer rouge ni le rutile. Ils seront ajoutés ensuite dans des proportions croissantes. Par contre j’ajoute 4,8% d’oxyde de fer rouge à Hamada-DP1 dont la concentration en oxyde de fer rouge restera fixe. Je mélange bien la poudre dans un bocal fermé.

Ensuite, au moyen d’une balance au millième, je pèse les constituants.

5/ Emailler les Tessons

Pour les essais sur 6 tessons voici ci-dessous comment préparer

Prendre 4 gobelets et déposer dans chacun : 

N°1 :  20g de SG12-DP05 + 0% de rutile et 6% de fer rouge soit 0,12g                             N°2 :  20g de SG12-DP05  + 1% de rutile soit 0,02g et 0,12g de fer rouge                        N°3 :  20g de SG12-DP05 + 2% de rutile soit 0,04g et 0,12g de fer rouge                        N°4 :  20g de Hamada-DP1

J’ajoute 14ml d’eau dans chaque gobelet et mélange bien avec un bâtonnet puis avec un pinceau à poils souples.

Six tessons :

N°1 : SG12-DP05 avec Rutile 0% et Fer Rouge 6% Dos 2 couches, Face 3 couches                   Hamada -DP1 Dos 3 couches, Face 2 couches

N°2 : SG12-DP05 avec Rutile 0% et Fer Rouge 6% Dos 3 couches, Face 3 couches                   Hamada -DP1 Dos 4 couches, Face 3 couches

N°3 : SG12-DP05 avec Rutile 1% et Fer Rouge 6% Dos 2 couches, Face 3 couches                   Hamada -DP1 Dos 3 couches, Face 2 couches

N°4 : SG12-DP05 avec Rutile 1% et Fer Rouge 6% Dos 2 couches, Face 3 couches                   Hamada -DP1 Dos 4 couches, Face 3 couches

N°5 : SG12-DP05 avec Rutile 1% et Fer Rouge 6% Dos 3 couches, Face 3 couches                   Hamada -DP1 Dos 3 couches, Face 2 couches

N°6 : SG12-DP05 avec Rutile 2% et Fer Rouge 6% Dos 3 couches, Face 3 couches                   Hamada -DP1 Dos 4 couches, Face 3 couches

6/ La Cuisson

Cuisson: 

Dans le four électrique à 1260°C selon notre courbe ( voir le chapitre courbe de cuisson). 150°C/h -> 1000°C soit 6h40min puis 70°C/h -> 1260°C et enfin un palier de 15min. soit 11h au total.

Refroidissement:

La décroissance de température spontanée du four électrique mesurée cet été à une température ambiante de 25°C est exprimée ci-dessous en minutes:

Pour avoir le maximum de chances d’obtenir des effets, je choisis de faire 3  paliers au cours du refroidissement: 80min. à 1093°C, 100 min. à 1066°C et 10min à 1010°C 

7/ Résultat

7a/ Variations du Rutile

Email brillant marron-marron clair avec traces et coulures noirâtres.

Le rutile donne un peu de jaune.

L’épaisseur ne change pas le rendu.

Rutile = 0%
Rutile = 1%
Rutile = 2%

7b/ Variations de l’Oxyde de Fer Rouge

– Retenir le tesson N° 5 face (Rutile 2% 3 couches de SG12-DP05 et 3 couches de Hamada-DP1)

Faire varier la concentration en oxyde de fer rouge dans SG12-DP05 tout-en- conservant la même épaisseur d’émaux: 3 couches-3 couches) .

Tessons 1, 2, 3, 4, 5, 6 =>  7/8/9/10/11/12% en Oxyde de fer rouge

7 et 8% Oxyde de Fer Rouge
9 et 10% Oxyde de Fer Rouge
11 et 12% Oxyde de Fer Rouge

On obtient un effet « goutte d’huile » avec des taches rouille sur fond noir.

C’est loin de l’effet fourrure de lièvre. Je suis surpris par le résultat. Comparons les tessons 5 et 6 de l’essai précédent aux tessons 1 et 2 de cet essai. La concentration en rutile est la même: 2%.

Ce qui varie c’est la concentration en oxyde fer rouge qui passe de 6% pour les premiers  à 7 et 8% pour les seconds.

Avec 1 à 2% de concentration en fer rouge de plus la couleur passe du marron clair avec traces noires à du noir avec traces rouille.

Cela avec la même courbe de cuisson dans le même four électrique.

Explication: il existe un seuil de basculement  de la teinte pour une concentration donnée en oxyde de fer rouge à 7%. Autre explication, une erreur de mesure de concentration entre les deux essais

Sur Glazy, je trouve un peu le même effet avec un émail de David Tsabar 

https://glazy.org/recipes/12580

7c/ Essai contrôle: même essai en faisant varier la concentration en oxyde de fer rouge de 0 à 10% avec 2% de rutile.

Par sécurité, je vais refaire de l’émail SG12-DP05 et doserai précisément les composants y compris l’oxyde de fer rouge dans les 11 gobelets avant d’y ajouter l’eau.

Tout ceci sans changer la couverte Hamada rouille modifiée DP1, car pour la couverte on verra après s’il faut la modifier.

La création d’émaux est une véritable école de patience et d’auto-critique.

 

 

 

Créer un émail fourrure de lièvre: 1ère partie

Essai sur un émail « fourrure de lièvre » ?

C’est en terminant l’émaillage de mes deux lièvres  

et en allant voir sur internet  leur référencement que je trouve « émail  fourrure de lièvre ».  Je me suis hameçonné comme le poisson au bout de la ligne. C’est quoi un émail en fourrure de lièvre?

La première image qui sort est celle de ce vase exposé au Musée d’Orsay créé par Auguste Delaherche en 1908 

Vase avec émail fourrure de lièvre

L’intrication de couleurs de ce vase rappelle en effet la fourrure de l’animal. Mais de quoi s’agit-il?

Dans les chef-d’oeuvres de la collection Ernest Grandidier mis en valeur dans le glossaire des techniques du Musée National des Arts Asiatiques-Guimet. 

Je trouve ceci qui apparait dans Glossaire/ Couvertes:

Couverte « fourrure de lièvre » de Jian: 

Couverte feldspathique avec fondant à base de carbonate de calcium et de potasse et grande quantité de fer (6%). Le surplus non dissous de fer en suspension est emmené par les bulles d’air qui éclatent à la surface.  Elles forment des points d’oxyde de fer qui coulent le long des parois et forment des taches. Cet effet nécessite une cuisson à 1300-1330°C.

Ce type de couverte est employé sous les Song (960-1279).

Bol – Chine Dynastie Song 960-1279

Que dit ChatGPT ?

Voici un résumé clair et pratique sur l’émail « fourrure de lièvre » en céramique (aussi appelé « hare’s fur » en anglais, 兔毫釉 en chinois).

1) Définition:

C’est un type d’émail historique, célèbre sur les bols Jian (Jian ware) de la dynastie Song (Chine). Apparence caractéristique : fond sombre (brun-noir) strié de fins « poils » verticaux brun clair, argentés ou métalliques rappelant la fourrure d’un lièvre. Lié aux émaux tenmoku/天目 utilisés aussi au Japon.

2) Pourquoi cet aspect apparaît (principes)

– Émail riche en fer : des composés de fer dans la glaçure cristallisent ou s’orientent pendant la cuisson/réchauffement, formant des traits fins.
– L’atmosphère réductrice pendant la cuisson favorise la réduction de l’oxyde de fer et la formation des bandes.
– Épaisseur de l’émail, tension de surface et composition (fluide vs visqueux) déterminent la longueur/largeur des « poils ».

3) Composition et paramètres (généralités)

– Base : fond feldspathique/ash-type (émail silicaté), parfois avec ajout d’oxyde de fer ou d’un engobe riche en fer sur la pièce.
Teneur en fer : typiquement notable — on trouve des plages allant de quelques pourcents à 10–15 % d’oxyde de fer selon la recette (les chiffres varient selon les recettes modernes).
– Température : cuisson haute température pour grès/stoneware — généralement dans la fourchette ~1200–1300 °C (cônes ~8–10).
– Atmosphère : réduction (less oxygen) pendant la montée et/ou le refroidissement; un refroidissement contrôlé favorise la cristallisation et l’apparition des stries.

4) Techniques pratiques pour obtenir l’effet

– Préparer un émail/engobe riche en fer (ou appliquer un engobe ferreux sur la surface avant glaçure).
– Application : coulage généreux ou superposition pour obtenir une épaisseur suffisante. Les coulures verticales favorisent les « poils ».
– Cuisson en réduction : contrôler l’atmosphère du four (charbon, gaz ou agent de réduction), et éviter une réduction trop brusque ou trop faible.
Contrôler le refroidissement (parfois maintien ou refroidissement lent) pour laisser se former/grossir les cristaux qui créent les traits.
– Expérimenter avec additions (rutile, titane, manganèse) et variations d’épaisseur — elles modifient l’apparence (passage vers « oil-spot »/taches métalliques ou vers des bandes plus nettes).

5) Variantes et confusions

– « Hare’s fur » se distingue de « oil-spot » (gouttes métalliques) et d’autres effets Tenmoku ; les transitions entre ces aspects peuvent être subtiles selon la recette et la cuisson.
– Les résultats sont très sensibles au four, au lot d’argile et aux petits changements de recette — prévoir d’innombrables essais.

6) Problèmes fréquents

Pas de stries : souvent manque d’oxyde de fer, cuisson oxydante, trop peu d’épaisseur, refroidissement trop rapide.
– Sur-glaçure qui coule trop : réduire l’épaisseur ou modifier la viscosité.
– Variation excessive : normal en cuisson réductrice ; documenter et standardiser l’empilement et l’alimentation en combustible pour la répétabilité.

7) Mécanismes chimiques

– Fer : l’oxyde de fer (Fe2O3 ➜ réduit partiellement en FeO/Fe ou en phases magnétiques comme la magnétite) est l’agent clef. La quantité et l’état d’oxydation du fer contrôlent la couleur et la métallisation.
– Réduction : une atmosphère pauvre en oxygène favorise la réduction des oxydes ferriques, créant les nuances sombres et les reflets métalliques.

8) Mécanismes physiques

– Phase séparation & cristallisation : sous l’effet de la chaleur et du refroidissement la glaçure peut se diviser en domaines riches et pauvres en fer ; des cristaux ou agglomérats ferriques (ou des dépôts vitreux à surface différente) forment les « poils ».
– Tension de surface et écoulement : la viscosité/glace en fusion et la gravité favorisent l’orientation verticale des stries lors du ruissellement. Les bulles de gaz et sites de nucléation (impuretés, grains non fondus) influencent la taille et la distribution.
– Additifs (rutile, titane, manganèse) : modifient la manière dont le fer cristallise et peuvent faire apparaître plus d’« oil spots » ou altérer la couleur/métallicité.

9) Paramètres de cuisson pratiques

– Température : généralement haute température (stoneware/grès). Plage typique ~1200–1300 °C ( cônes 8–11 selon le four). Les bols Jian historiques étaient cuits très chaud (vers ~1280–1300 °C).
– Atmosphère : réduction recommandée, surtout lors de la montée et du refroidissement ; la réduction pendant le refroidissement est souvent cruciale pour la formation des poils.
Épaisseur de glaçure : assez importante ; si trop mince, les stries n’apparaissent pas. Trop épaisse peut couler excessivement.
– Refroidissement : un refroidissement contrôlé (parfois maintien, puis refroidissement lent) favorise la cristallisation visible.

10) Exemple de recette expérimentale (point de départ)

(Remarque : adapter selon matériaux disponibles et testez sur tessons.)
– Potasse feldspath : 40 %
– Kaolin (ou argile réfractaire) : 20 %
– Silice (sable) : 20 %
– Oxyde de fer (Fe2O3) : 8–12 % (commencer par 8 % et augmenter si nécessaire)
– Optionnel : rutile 2–4 % pour variations « oil-spot »
Application : dégraissage/engobe ferreux (optionnel : barbotine 2–5 % Fe2O3) ; trempage pour obtenir 2–3 mm de couche (ou plusieurs couches si besoin).
Cuisson : monter à 1240–1280 °C en atmosphère réductrice ; maintien 15–30 min ; amorcer refroidissement lent et veiller à maintenir réduction pendant la phase critique où la glaçure cristallise.

11) Technique d’application et points expérimentaux

– Engobe ferreux : appliquer un engobe (épais) riche en fer avant la glaçure pour accentuer les bandes.
– Épaisseur et coulures : favoriser des coulures verticales (glaçure suffisamment fluide) pour des lignes plus longues.
Test systématique : réaliser une plaque d’essai avec variations en colonnes : 1) teneur en fer (5, 8, 12 %), 2) épaisseur (fine/ moyenne/épaisse), 3) présence/absence de rutile, 4) profils de réduction (légère/forte, prolongée au refroidissement). Photographiez et notez chaque test.

12) Problèmes fréquents et remèdes

– Pas de « fourrure » : vérifier réduction, augmenter Fe2O3, augmenter épaisseur, tester engobe ferreux.
– Glaçure qui coule trop : réduire flux (moins de feldspath), diminuer épaisseur, ajouter un peu d’argile pour épaissir la glaçure.
– Résultats très variables d’un four à l’autre : normal — standardisez positionnement, quantité de combustible/ventilation et documentez précisément.

Pour ma première utilisation de ChatGPT dans ce blog je ne suis pas déçu. Je peux lui demander plus, des références, des expérimentations… mais c’est un plaisir de chercher soi-même.

Peut-on créer la fourrure de lièvre en Oxydation?

Une partie de la réponse est dans la revue: Ceramics Art Network

https://ceramicartsnetwork.org/daily/article/Oil-Spot-and-Hares-Fur-Glazes-Demystifying-Classic-Ceramic-Glazes

John BRITT, célèbre céramiste américain donne en 2013 dans cette revue des explications plus détaillées. Surtout, il offre la possibilité de l’obtenir en oxydation.

Silver Iron Cup (détail), porcelaine avec un vernis de combinaison de fourrure de lièvre – deux manteaux de John’s SG-12, un manteau Candace Black, et un manteau de Hamada Rust, oxydation du cône 10.

Ci-dessous un résumé du texte de John Britt:

« Aujourd’hui la plupart des potiers sont familiarisés avec les émaux  tenmokus et la cuisson en réduction. Mais pour obtenir des effets goutte d’huile les tenmokus rigides nécessitent d’être cuits en oxydation ».

Principe chimique simple:

Fe2O3 est en principe réfractaire à l’oxydation mais il peut aisément être changé en fondant sous forme de FeO en réduction. Pour les gouttes d’huile, nous sommes intéressés dans l’aptitude du fer à d’auto-réduire. A cône 7 (2250°F ou 1232°C), Fe2O3 ne peut maintenir sa structure cristalline trigonale et il se réarrange en structure cubique, la magnetite (Fe3O4) qui se réduit encore pour devenir ferreuse (FeO). Ceci est appelé la réduction thermique.

Echappement de l’oxygène

Ceci signifie que lorsque c’est suffisamment chauffé, l’oxyde de fer rouge utilisé dans l’émail laisse s’échapper un atome d’oxygène. Alors que les bulles d’oxygène libérées atteignent la surface de l’émail, elles entraînent un peu de magnétite avec elles et la déposent en surface. Une tache noire rugueuse est laissée sur la surface de l’émail. Elle est différente de l’émail environnant en raison d’une grande concentration d’oxyde de fer dans cette petite surface et de sa re-oxydation pendant le refroidissement.

Effet goutte d’huile

Pour finaliser l’effet goutte d’huile, on doit en premier appliquer une épaisse couche d’émail et cuire en oxydation à cône 10 ou plus haut . L’émail va buller vigoureusement pendant que le fer se réduit thermiquement.

Contrôler le refroidissement

Une période de trempage est utile à la fin de la cuisson pour permettre aux bulles de se lisser. Ceci peut être fait par des moyens divers qui donnent des changements subtils dans l’aspect final de l’émail. Par exemple, certains cycles de cuisson ralentissent la courbe finale de 1232°C à 1287°C jusqu’à 10°C/h ou moins alors que d’autres atteignent 1287°C avec un palier d’une heure et d’autres encore cuisent à cône 12 ou 13.

La base de l’émail

La plupart sont des bases de feldspath avec 5 à 8% d’oxyde de fer rouge. Ceci produit du brun sur des taches brunes. L’ajout de carbonate de cobalt à 2-5% produit une surface d’émail avec des taches argentées flottant dans un champ noir.

Superpositions d’émaux

Une autre option inclut une approche multi-couches d’émaux. Les taches d’huile peuvent être réalisées en utilisant une barbotine de fer au dessous d’un émail temoku. John’s SG-12 appelé « émail barbotine » car il contient une grande quantité de barbotine argileuse. Il est appliqué en 1er.

JOHN’S SG-12 Cone 10-11 Oxydation

Cendre d’os 2,06%
Dolomie 5,53
Talc 3,08
Craie 1,73
Custer Feldspath 38,03
Red Art Clay 40,12
Kentucky Ball Clay 9,46
100,00
Ox. Fer Rouge 4,50
Rutile 1,00

 

Dans ce cas, utiliser la couverte 215 . John’s SG-12 s’applique de façon épaisse (3 couches) et la couverte en une ou deux couches.

Fourrure de lièvre

La fourrure de lièvre se dénomme ainsi parce que ça ressemble à la fourrure du lièvre. C’est un type spécifique d’émail en goutte d’huile qui est noir avec de délicates stries brunes. Une autre forme d’émail comporte des stries argentées flottant dans une base noire/brune ( appelée Yuteki). Une forme encore plus difficile à réaliser comporte des stries irisées. Très prisée, elle coûte cher. Aussi appelé Yohen, ce qui signifie changeant de couleur.

Comment faire?

Une façon dobtenir la fourrure de lièvre est de cuire les glaçures très chaudes et de les faire tremper longuement pour permettre à la glaçure de couler sur le côté du pot, ce qui fait couler et fondre les taches dhuile sur le côté du pot.

Plus simple

Un moyen plus simple est dutiliser un glaçage de couverture plus fluide, comme la rouille Hamada, sur la glaçure à base de barbotine (John’s SG-12). Cela fait que les taches d’huile s’écoulent le long du pot, formant des stries délicates plutôt que de retenir fermement les taches d’huile. Ce coulage et ce processus de stries se modifient en utilisant différentes glaçures de recouvrement. Vous pouvez utiliser un glaçage de couverture kaki pour obtenir plus de couleurs orange, ou un saturat de fer pour donner plus de paillettes de fer.

Espresso Cup (détail), porcelaine avec John’s SG-12, puis Hamada Rust au-dessus, cône 10 en oxydation, 2011. Les variations de motif s’obtiennent en ajustant l’épaisseur du sous-manteau (SG-12) et du surmanteau (Hamada Rust).

Il ne me reste plus qu’à essayer: voir la 2ème partie

 

 

 

 

Coefficient de Dilatation thermique

Tu ouvres ton four et constates que ton émail a des fissures, ou des craquelures, des zones de tressaillage ou d’écaillage. Tu l’as peut-être recherché pour donner un effet décoratif. Mais ça peut aussi être un désastre pour tes pièces qui deviennent impropres à un usage alimentaire en raison de leur porosité.

C’est l’effet nuisible du Coefficient de Dilatation thermique (CDT). Nous verrons plus loin qu’il n’est pas seul en cause!

Le CDT: de quoi s’agit-il?

C’est la mesure du changement de longueur ou de volume du matériau en céramique sous l’effet de la température. Plus forte est l’expansion de la pièce pendant la cuisson, plus sera forte sa contraction pendant son refroidissement.

Le but de cette mesure est « de déterminer comment les matériaux et émaux peuvent s’ajuster réciproquement et leur possibilité de survivre à un réchauffement et à un refroidissement sans fissurer« .

Les valeurs d’expansion de l’argile et des émaux lors de la cuisson sont très faibles et se notent scientifiquement en mètre/mètre/°C . Ce CDT est mesuré par un dilatomètre. Sa valeur  (par exemple 6,5×10-7 ) se note 6,5 par simplification. Plus sa valeur est haute, plus forte est l’expansion. Une argile ou une glaçure s’allonge de 2 à 5mm par mètre si on les échauffe de 500°C soit 5 à 10 microns /° C.

La compatibilité terre-émail

Les fissures surviennent à distance de la cuisson

Ta pièce sort du four, sans fissure. Hélas, quelques jours plus tard, après un séjour au réfrigérateur apparaissent des fissures. Celles-ci  peuvent donc survenir plus tard, lors de contraintes thermiques au froid ou à la chaleur. Cela provient des variations d’expansion-contraction respectives de la terre et de la glaçure. La terre se dilate pendant la cuisson et se rétracte au refroidissement. La glaçure fond au cours de la cuisson et adhère au support de terre pendant le refroidissement.

L’interaction pâte-glaçure

Au cours de ces variations de température survient une interaction entre la terre et l’émail. Le plus souvent, ces variations sont sans effet visibles. Elles surviennent lorsque l’interaction terre-émail est trop forte,  lorsque l’émail se dilate trop par rapport à la contraction de la terre. Les glaçures résistent mieux à l’effort d’une compression qu’à celui d’une traction. Le tressaillage provient d’une contrainte de traction trop élevée appliquée à la glaçure, c’est-à-dire lorsque le CDT de l’émail est trop élevé par rapport à celui de la pâte.

La compatibilité terre-émail

L’objectif du potier est d’avoir une compatibilité terre-émail. Pour cela, il faut que l’écart des CDT entre celui de la pâte et celui de l’émail soit le plus faible possible. S’il existe un écart, il faut que le CDT de l’émail soit inférieur à celui de la pâte. Des tolérances sont acceptables, évaluées à 10 à 15 points pour la faïence et à 1 à 5 points pour le grès et la porcelaine. Par exemple: pour un grès sablé PRAI avec un CDT de 56, un CDT de l’émail de 51 convient.

CDT des argiles : fiches techniques du fournisseur

Expansion thermique de l’argile: un phénomène compliqué

L’expansion thermique est un phénomène très compliqué. C’est le produit résultant de grains minéraux qui peuvent rester inchangés ou avoir fondu ou coulé ou encore avoir inter-agi pour créer un nouveau minéral.

C’est aussi le produit complexe de plusieurs facteurs tels que le degré de vitrification, la courbe de cuisson, la taille des particules, la forme des matériaux et la distribution des particules. Cette complexité de la microstructure conditionne son expansion thermique.

La fiche technique du fournisseur

En pratique, recherche le CDT de la pâte que tu utilises dans la fiche technique du fournisseur.

A titre d’exemple, voici ci-dessous les CDT des grès que j’utilise et qui sont données par le fournisseur:

PRAI  56,  PRAF 56, PRNI 55, PRNG 50

En théorie, le CDT de ma glaçure doit être inférieur de à 1 à 5 points à celui de la pâte. Il faut donc qu’il soit compris entre 45 et 51.

Comment puis-je calculer le CDT de l’émail?

Calcul du CDT d’une glaçure

De quoi dépend l’expansion thermique de l’émail?

L’expansion thermique d’un émail dépend essentiellement de sa composition chimique. Le calcul fait intervenir les valeurs expérimentales sur la fraction molaire des oxydes. A titre d’exemple, voici l’action de quelques oxydes sur le CDT selon A.A. Appen entre 20 et 1300°C avec des CDT : K20 = 465, Na2O = 395, CaO = 130, MnO = 105, MgO = 60, Fe2O3 = 55, ZnO = 50, CoO = 50, Al2O3 = -30, SnO2 = -45 et = ZrO2 -60.

La composition chimique n’est pas seule en cause dans le CDT de l’émail

Certaines valeurs sont variables en fonction de la phase du matériau telles que SiO2 : 5 à 38, TiO2 : -15 à 30. Ainsi, la silice fondue (non cristalline) a un CDT proche de zéro lors du passage de la température de la pièce à 1093°C. Dans les mêmes conditions, le quartz minéral qui a la même composition chimique a une expansion importante de 1,5% ! Par comparaison, l’alumine fondue (à 1400°C) a un CDT de 0,9% et le zirconium à 0,8%.

En pratique, le calcul du CDT d’un émail est inutilisable

Comprendre le calcul du CDT de l’émail peut donner néanmoins une orientation au céramiste pour ajuster une glaçure en modifiant sa composition. Les glaçures ayant de hauts pourcentages en particules de quartz libre ont la plus haute expansion. Les porcelaines vitreuses (où le feldspath a dissous une bonne partie de la silice) et certains corps tels que la mullite ou la phyrophyillite ont les plus faibles expansions.

D’autres facteurs influencent le CDT de l’émail

Il faut compter aussi avec le degré de dissolution et d’homogénéité des différentes particules dans le mélange. Le degré auquel sont survenues la séparation de phases et la cristallisation au cours du refroidissement dans le four affectent également le CDT.  Comprendre le CDT d’un émail spécifique est donc le résultat de l’ensemble des variables qui participent au CDT.

En pratique, ceci ne peut se faire qu’au cours du temps et avec de l’expérience .

C’est par des calculs de composition d’émail et des tests répétés que l’ajustement de l’émail à l’argile peut être démontré.

Interaction pâte-glaçure

Jusqu’ici, on a considéré les CDT de la pâte et de la glaçure séparément mais quelle est leur interaction?

La glaçure en fusion va dissoudre la pâte en partie. Il en résulte une couche intermédiaire tesson-glaçure. Sa composition et ses propriétés sont fonction de la composition respective des deux matériaux, de la courbe de température et de l’épaisseur de la glaçure. Plus cette couche est épaisse et plus les tensions du tesson sur la glaçure sont faibles. En enrichissant la glaçure en silice, on réduit sa dilatation et on diminue le risque de tressaillage. De même, la re-cuisson d’une pièce peut faire disparaître le tressaillage par enrichissement de la glaçure en silice au niveau de la couche intermédiaire.

Pour éviter l’écaillage, il faut préserver la couche intermédiaire en favorisant au maximum la fixation de la glaçure au tesson. Donc, prévoir de bien dépoussiérer le dégourdi avant de l’émailler.

Comment prévoir si une glaçure va tressailler?

Mon conseil: clique sur le lien smart2000.fr

En résumé: émaille une face d’une plaquette biscuitée bien plane et fait la cuire. Si elle se déforme, c’est que tu as un risque de tressaillage.

Série de statuettes de marmottes en céramique

Comment faire une série de statuettes en céramique?

A la suite de la marmotte de 52 cm de hauteur,  je veux créer une série de 6 statuettes de marmottes mesurant 26 cm de hauteur chacune.

Voici les 6 étapes:

1-Préparation de la table:

6 rondeaux devant et sur la croûteuse en arrière, une plaque étirée de grès chamotté PRAF  de 5mm d’épaisseur.

Je place une feuille de papier journal sur chaque rondeau

2- Je découpe 6 ronds d’argile dans la plaque…

…et les place sur les feuilles de papier posées sur chaque rondeau…

Un trou dans chaque rond (pour éviter tout risque de casse à la cuisson). Puis un tube d’argile de 13cm de hauteur posé sur le premier rond

3- Début du modelage

Petits colombins dedans et dehors pour fixer le tube à sa base et pour la fermeture verticale

Découpe des pieds dans le rond….

Fin de découpe des pieds…

4- Mise en attente des ronds et poursuite du modelage

Je couvre de plastique les ronds en attente pendant que je travaille sur la première statuette…

Pour connaître la circonférence du tube, je place un bout-de-ficelle sur le tube…

Je le déroule ensuite sur la plaque…

J’en prends 13cm pour la hauteur …

Je place cette plaque sur le tube. Elle va former le deuxième tube. J’assemble les deux avec de la barbotine et de petits colombins …

Avec une cuillère, tapote la paroi intérieure pendant que les doigts (ou une palette) maintiennent la paroi extérieure.  Ainsi émerge la forme du corps.

En découpant deux demi-cercles, ferme le tube du haut

Pas joli, museau trop long. Ce n’est pas grave, tu le lui coupes …

Comme ça…

5- Temporisation nocturne

Fini pour ce soir, alors couvre le tout avec du plastique…

Le matin, découvre et humidifie chaque statuette avec le pulvérisateur…

6- La finition

Recouvre chaque statuette de barbotine en grès rouge et peigne les avec un pinceau en fils métalliques.

La deuxième et …

… ainsi-de-suite…

… jusqu’à la dernière.

Place les en sécurité pour le séchage avant cuisson de dégourdi.

Amusant: tu observes que la première statuette n’a que 4 orteils. Après correction en chemin elles ont bien toutes leurs 5 orteils au final!

Faire une fourrure d’animal en céramique

Comment faire des poils en céramique?

Tout d’abord choisir son modèle. Je prends celui d’une marmotte ou plutôt celui d’une photo de marmotte. Le modèle vivant est trop peu coopératif.

Le modelage est plus facile que celui du lièvre ou que celui du pèlerin.

Modelage en grès chamotté (argile PRAF de Céradel). Je prépare des bandes d’argile de 10cm et 5mm d’épaisseur étalées grâce à la croûteuse. La statue de la marmotte teint debout, bien droite et repose sur ses postérieurs biens solides.

Voici venu le but poursuivi: faire les poils.

Je me munis d’un extrudeur de cuisine pour les poils du corps

La fourchette à côté sert à scarifier la statue avant d’y apposer de la barbotine pour y coller les filaments qui représentent les poils.

La barbotine est  une engobe de grès brun humide. J’applique chaque filament extrudé sur l’engobe en respectant l’alignement des poils selon la direction observée sur la photo. Enfin, j’essaye, c’est pas évident et surtout ça prend du temps.

Je continue patiemment et recouvre tout le corps sauf la tête et les extrémités.

Il me reste à recouvrir la tête. Les poils faits avec l’extrudeur de cuisine sont trop gros. Je vais au magasin le plus proche acheter une râpe à ail et gingembre.

Enfin, il reste à faire quelques détails. Pour les globes oculaires, creuse des cavités dans les orbites et introduis-y deux billes de grès noir. Pour façonner les billes, prends deux petites quantités égales de grès. Tu les modèle sur la table en tournant avec le plat de la main. Puis, tu places chacune dans une tasse ronde que tu agites de manière aléatoire. Tu  badigeonnes de la barbotine tout autour de la cavité orbitaire et place les deux billes. Creuse un petit trou à la superficie de chaque bille et tu y déposes une infime pointe de porcelaine-papier que tu prélèves avec la pointe du couteau.  La porcelaine-papier sert aussi à faire les dents de la marmotte. Ce sont deux quenottes pointues en haut et en bas.

Enfin, je badigeonne de la barbotine noire sur l’extrémité des doigts des quatre membres et c’est terminé. Une nuit de séchage seulement parce-que c’est l’été et que ça sèche très vite.

04 Août 2025: elle part en cuisson de dégourdi à 980°C.

Espérons que les poils vont tenir, c’est nouveau pour moi!

Après coup, je viens de faire une recherche internet mais n’ai rien trouvé de pratique sur le sujet. Par contre j’ai découvert une perle dans instagram: Cécile Fouillade alias Siqou crée des poils en porcelaine. Chaque poil est fait un-à-un à la main et  déposé ensuite sur un textile. Je t’invite à visiter son site, c’est bluffant!

05 Août 2025: Sortie de four

Deux plaques de grès se sont décollées sur la joue et la fesse gauche en entraînant les poils

Comment réparer? Avec du plâtre de rebouchage (voir le chapitre Modelage). Mais attention, après restauration au plâtre tu ne peux plus émailler!

Enduit de lissage: mortier pour collage des plaques de plâtre.

J’étale une couche de plâtre humide au couteau qui sert de support.

J’étire des filaments de plâtre un peu plus sec avec l’extrudeur et les dépose sur le plâtre humide.

Lorsque c’est sec, je me sers d’un pistolet à colle pour fixer les filaments d’argile et de plâtre, ce qui est un peu long.

Enfin, je prépare une patine de couleur tabac que je passe au pinceau.

 

 

 

 

La résilience du potier

Tout ça pour rien!

Je passe huit heures à monter une statue

Montage de la statue en grès chamotté sur un socle de grès rouge

Après la pose de sa cape, je retourne la statue et enfile l’orifice laissé pour le cou sur une tige métallique fixée à un support en bois. Jusque là tout va bien.

Pour façonner la tête je positionne la statue sur un support horizontal.

En un rien de temps, la statue s’est brisée

La statue brisée part dans la bassine pour recycler la terre

Et on recommence

Après l’échec, tu es dépité. Puis tu réfléchis. Je dois recommencer à zéro mais avec une meilleure méthode

Installer un support adapté

 

Barres métalliques verticales fixées au support

Utiliser des fils de Kanthal

Les jambes sont montées le long de fils de kanthal

 

L’inclinaison de la jambe suit l’axe d’une tige de métal

… et des croisillons pour l’armature interne

Pour assurer le solidité, je place des croisillons en argile à l’intérieur des tubes au fur et à mesure du modelage

Question : comment va-t-elle tenir debout?

La statue penche en avant au delà du centre de gravité afin de simuler la marche. Elle ne tient debout que grâce aux supports. Comment la faire tenir debout dans le four et après la cuisson?

Pour la cuisson, je la calerai au mieux dans le four. Après la cuisson je la soutiendrai au moyen d’un support métallique.

Ne pas dépasser la hauteur du four

La hauteur du four est de 64cm, hauteur à respecter pour la statue si je veux la cuire en un seul morceau.

*

Je coupe et recolle une jambe qui me parait trop longue. Pour soutenir les larges manches des bras j’incorpore des fils de kanthal se prolongeant dans le corps.

Je place la tête sur les épaules. Le chapeau sera posé dessus sans dépasser les 64cm de hauteur de l’ensemble afin de ne pas dépasser les limites du four. Le bâton du bras droit est un tube d’argile, fragile, ce qui fait sa valeur. Il faut également poser la veste sur les épaules mais je l’ai déjà fait, ce n’est pas très compliqué.

J’avance dans le projet mais plus je progresse et plus je m’interroge: comment faire tenir tout ça ensemble? comment assujettir ce corps penché vers l’avant avec ses bâtons posés au sol?

Je ne vois qu’une solution: une fois terminé le montage de la statue, je coule un sol en argile qui simulera le chemin et qui réunira les pieds et les bâtons.

14 Juillet 2025: la statuette est terminée

Prochaine étape: retirer délicatement les fils métalliques et la décoller de son support. Espérons qu’elle ne se brisera pas. Je dois aussi faire un trou dans le corps sous la cape. Après cuisson, ce trou me permettra d’y introduire un support métallique.

Nouvel échec

Après avoir mis des cales dans le four à bonne hauteur, je me prépare à l’y déposer. Sans voir rien heurté, les jambes, une main et les bâtons se brisent.

J’en tire comme leçon que faire une statue en déséquilibre avec des éléments aussi fragiles est une tâche trop difficile pour moi. Je dois revoir à nouveau ma copie.

Je laisse passer quelques jours et me remets au travail.

19/07/2025 Restauration

Je restaure la statue en remodelant le bas des jambes, les pieds et une main. Du coup, je lui donne moins d’allure de mouvement. Je positionne le centre de gravité  entre les jambes pour la faire tenir debout. Je retire les bâtons et sculpte les mains pour y placer secondairement des bâtons en bois.

Enfin, je dépose une engobe de terre noire sur la cape et la place debout dans le four. Pourquoi une engobe noire ? Si la statue supporte la cuisson, je vais tenter de l’émailler. Je souhaite  superposer un émail blanc réticulé sur terre noire. Je la cale avec des pots déjà biscuités non émaillés.

Il manque le bouquet final lors de l’ouverture du four dès demain.

20/07/2025: Ouverture du four : sauvé

Ouf!, pas de casse heureusement. Je le mets debout . Il tient grâce à une petite cale placée sous son pied gauche.

Je lime un peu la plante du pied droit afin de retirer la cale et le voilà prêt à être émaillé.

27/07/2025: l’émaillage.

Ce matin, je l’ai entièrement émaillé avec des émaux mats cône 6 à 1200°C. La cuisson finale, c’est la dernière ligne droite. Il sort comme il doit sortir, tu ne peux plus y toucher.

30/07/2025: la récompense

La statue sort du four intacte, les émaux sont de belle qualité, ouf!

Il reste à faire réaliser une plaque en métal hérissée de deux pointes qui pénètreront par l’orifice laissé dans chaque plante de pied et que je collerai.
Il reste aussi à faire deux bâtons en bois qui seront placés dans chaque main.

04/08/2025: il tient debout

Plaque en métal en forme de coquille St Jacques qu’a réalisée COMUA

J’instille du ciment-colle (Mapei) par les orifices creusés dans la plante des pieds. J’y introduis les deux piques soudées à la plaque de 10cm.

Il ne reste qu’à trouver les bâtons.

 

La courbe de cuisson en céramique

Une mauvaise cuisson des céramiques peut engendrer des défauts et aussi un risque de casse. Il faut assimiler les règles de base. Les subtilités viennent à l’usage.

A titre d’exemple, clique sur le lien  » Courbe de cuisson Rhode » . Tu trouves un résumé en 2 tableaux de ce qu’il te faut connaître pour la cuisson en four électrique. 

Ci-dessous ces tableaux annotés:

Faïence

Biscuit de faïence 1020°C —->   Température à atteindre: 1020°C
Rmp1: 80°c/h                       —–>   1ère partie 80°c /h jusqu’à 600°C
jusqu’à Tmp1: 600°c                      soit 7h 30min
Rmp2: 100°c/h                     ——>  2ème partie 100°c/h jusu’à1020°c
jusqu’à Tmp2: 1020°c                    soit 4h 20min

Durée totale: 11h 50min

Émail de faïence 1000°C —->   Température à atteindre: 1000°C
Rmp1: 100°c/h                    —->   1ère partie 100°c /h jusqu’à 900°C
jusqu’à Tmp1: 900°c                    soit 9h
Rmp2: 80°c/h                       —->   2ème partie 80°c /h jusqu’à 1000°C
jusqu’à Tmp2: 1000°c                  soit 1h et 15min
T2: 1000°c pendant 15 min.—> palier à 1000°c pendant 15min

Durée totale : 10h 30min

Grès et porcelaine

Dégourdi de grès 980°C —->   Température à atteindre: 980°C
Rmp1: 80°c/h                    —–>   1ère partie 80°c /h jusqu’à 600°C
jusqu’à Tmp1: 600°c                  soit 7h 30min
Rmp2: 100°c/h                   —->   2ème partie 100°c /h jusqu’à 980°C
jusqu’à Tmp2: 980°c                  soit 3h 48min

Durée totale 11h 18min

Émail de grès 1260°C / 1280°C—-> Température à atteindre: 1260/1280°C
Rmp1: 100°c/h                            —–>   1ère partie 100°c /h jusqu’à 900°C
jusqu’à Tmp1: 900°c                             soit 9h
Rmp2: 80°c/h                               —->   2ème partie 80°c /h jusqu’à 1260°C
jusqu’à Tmp2: 1260°c                          soit 4h45min
T2: 1260°c pendant 15 min.     —–> palier 1260°C pendant 15min

Durée totale 15h

A titre d’exemple, ci-dessous une courbe de cuisson du « blog-du-bol »

 

Notre courbe de cuisson est moins rapide afin d’éviter d’abîmer les résistances:

La Cuisson

150°C/h jusqu’à 1000°C soit 6h40min

70°C jusqu’à température voulue: de 1200°C à 1280°C

Palier de 15min soit un total de 11 heures pour la cuisson

Le refroidissement : il peut être spontané après arrêt de la cuisson

Voici la courbe de refroidissement de 1200°C à 600°C en 4h15 pour une température extérieure de 27°C. Soit environ 150°C/h.

Pour obtenir des effets sur des émaux macrocristallins cuits à cône 8 à 10,  il peut être intéressant de faire des  paliers au cours du refroidissement: un palier de 80min. à 1093°C, un palier de 100 min. à 1066°C et un palier de 10min à 1010°C ( Réf.  livre  « The Complete Guide to HIGH-FIRE-GLAZES de John BRITT pages 140-141)

Les 4 règles à bien connaître:

Pour le biscuit:  la faïence se cuit plus haut (1020°C) que le grès(980°C)

Et pour l’émail : c’est l’inverse

Le biscuit : 1ère partie plus lente (80°C/h) que la 2ème partie (100°C/h)

Et l’émail   : c’est l’inverse

Les 4 phases de la cuisson

Le séchage: 25 à 100°C

Les pièces sont plus ou moins sèches selon la saison, le temps de séchage avant cuisson, le type d’argile…La 1ère phase de cuisson vise à finir le séchage qui est atteint à 100 ºC.

Le Chauffage : 100° à 600°C

Transformation allotropique du quartz et évaporation de l’eau structurale des minéraux argileux.

La vitrification: 600°C à la fin de la cuisson

Véritable cuisson: changements physiques et chimiques qui transforment de manière irréversible l’argile en céramique durable.

Le refroidissement:

Décroissance de la température à four fermé (ne pas ouvrir avant d’avoir atteint les 50°C pour éviter un choc thermique). Selon la température extérieure, c’est plus ou moins long, le four ne consomme aucune énergie. Pour certains émaux il peut être utile des paliers de refroidissement.

Programmateur, sonde pyrométrique et cônes pyrométriques

La courbe de cuisson s’établit sur le programmateur du four. La température s’affiche sur l’écran au fur-et-à-mesure de la cuisson. La température de cuisson finale des pièces ne correspond pas à celle affichée par l’écran. L’écran affiche la température instantanée transmise par la sonde pyrométrique du four. Elle ne prend pas en compte le cumul de chaleur en fonction du temps d’exposition des pièces. La température réelle des pièces s’évalue grâce aux cônes pyrométriques (ou montres).

Un conseil: ne programme pas cinquante courbes, tu vas t’y perdre. Choisis deux courbes pour la faïence (biscuit et émail) et quatre courbes pour le grès (une pour le dégourdi) et trois pour l’émail (  1200°C – 1260°C et 1280°C) c’est largement suffisant.

Modeler un lièvre

Je vais modeler deux lièvres, or, je ne me souviens plus comment j’ai fait les précédents

Je retrouve mon lièvre initial et prends les mesures pour en faire un dessin à l’échelle 1/2.  En hauteur, je prévois  64 cm jusqu’à la pointe des oreilles, limite autorisée par le four.

Je prends de l’argile chamottée (PRAF) et l’étale afin d’obtenir une plaque de 5-6mm d’épaisseur.

Ci-dessous voici ce qu’il ne faut pas faire

Selon les cotes de mon dessin, je prépare des tubes et des segments de corps et de pattes. Je prévois de les dresser et de les assembler. C’est une bonne idée selon moi sauf que ça ne marche pas. Le gros tube du corps s’effondre, les pattes ne tiennent pas… Je recycle l’argile et recommence de zéro.

Ci-dessous voilà ce qui marche bien

Le support

Je prépare deux plaques en contre-plaqué recouvertes d’une fine pellicule d’argile de même type. Celle-ci me sert à fixer la statue à la plaque de bois.

Les plaques-colombins

Je modèle deux lièvres en même temps en empilant des plaques de 4 à 5 cm  de hauteur disposées à la verticale selon la méthode du colombin. Le colombin est simplement remplacé par les plaques ce qui gagne du temps. A chaque fois je les assemble en utilisant de la barbotine (voir le chapitre CMC) et place un fin colombin en dedans et en dehors.

Le séchoir

Toutes les deux plaques, je durcis l’assemblage au séchoir pour m’assurer de la solidité du support. Pour les pattes, je reprends  les tubes déjà préparés, les assemble au corps et je sèche. Je termine avec la tête en procédant de la même façon. Je la soutiens avec une palette en bois et sèche l’ensemble.

Le pulvérisateur

Quand c’est solide, j’humidifie la statue au pulvérisateur. Je peaufine l’ensemble puis le racle, ajoute un peu d’argile par ci par là.  Je suis satisfait quand il ressemble à un lièvre et pas à un chat.

Le décollement

Après il faut le décoller du support d’argile de la plaque. Au cutter, je détoure tout ce qui colle à la plaque (pattes, arrière-train). J’humidifie au pulvérisateur jusqu’à pouvoir passer un fil métallique entre la statue et la plaque. Pour le premier lièvre, je casse deux pattes que je recolles immédiatement avec de la barbotine. Pour l’autre pas de souci, il se décolle en bloc sans dégât.

Les trous

Enfin, j’ajuste une mèche à la perceuse et perce de petit trous dans le fondement, entre les orteils, sous le menton. Je laisse libres les trous des oreilles qui communiquent avec la tête.

La cuisson

Je place chaque lièvre dans le four électrique à tour de rôle et cuis à 980°C.

Au final,

Tout s’est bien passé, pas d’éclatement, les deux lièvres sont sortis intacts. Je dois maintenant décider de les habiller de leur fourrure: émail, vernis, patine?

20/08/2025 La glaçure des lièvres

Les deux lièvres émaillés sortent du four après cuisson à 1200°C cône 6.

L’un est de couleur marron clair et l’autre gris foncé. Pour les deux, pupille bleu clair sur fond gris clair et paupière ourlée d’un émail bleu foncé. Oreilles en émail rose clair. Clairement, on voit la femelle à gauche et le mâle à droite. C’est ma vision subjective, trop genrée sûrement.  Ils me plaisent bien.

Une recherche sur internet me conduit à un émail « fourrure de lièvre » qui me donne une piste de recherche pour un prochain article

 

 

 

 

Prévoir le diamètre d’une assiette

Question N°1: Quel est le diamètre d’une assiette finie ?

La réponse à cette question est relativement simple:

Une assiette plate mesure 25-26cm (diamètre maximum qui passe en lave-vaisselle standard). Pour une assiette creuse, prévoir 24-25cm. Enfin, une assiette à dessert fait 19-23cm, variable selon ses goûts de chacun.

Question N°2: comment calculer le diamètre d’une assiette crue?

Cela dépend du retrait de l’argile utilisée, disons du grès qui convient le mieux à l’usage alimentaire.

J’examine les paquets de terre à ma disposition:

Comme exemple, je prends la PRAI qui contient 40% de chamotte fine 0-0,2mm et qui convient bien pour les assiettes.

Le retrait affiché est de 5,9% au séchage et de 7% à la cuisson.

Je connais le diamètre de l’assiette plate finie après cuisson: 26cm

Je calcule le diamètre de l’assiette sèche avant cuisson:                                26cm+(7×26)/100= 27,82cm 

Puis, calcul du diamètre de l’assiette humide avant séchage: 27,82cm+(5,9×27,82)/100= 29,46cm qui est le diamètre initialement découpé dans la plaque d’argile

Attention, ceci vaut pour une assiette plate, ultra-plate sans rebord. Pour avoir le même diamètre de 26cm fini avec un rebord un peu relevé, il faut ajouter 5 à 10mm selon le type de rebord. De plus il faut prévoir que toutes les assiettes doivent avoir le même diamètre pour pouvoir s’empiler facilement. Donc, prendre dans cet exemple un diamètre de 30cm, relever le bord avec le même outil et la même épaisseur pour toutes les assiettes.

Enfin, il n’y a pas toujours les informations sur le paquet d’argile et je dois aller les chercher sur internet ou bien appeler mon fournisseur. C’est ce que j’ai fait pour le grès W11 de couleur blanche fourni par Ceram Décor:

Retrait séchage 5% et retrait 5,9% après cuisson à 1200°C

On voit ici que le retrait après cuisson dépend de la température de cuisson.  Celle-ci dépend du type d’émail utilisé. Pour le grès émaillé haute-température, ce sera une cuisson à 1200°C pour les cônes 6 et 1280°C pour les cônes 8. Je prendrai donc 6% de retrait à 1280°C.

 

Assiettes pour belles tables ?

Créer une assiette cela paraît simple car la forme varie peu. Le diamètre est de 22 et 31cm. La réalisation n’est pas très compliquée (voir chapitre en question)

Pour quel usage et pour quelle table?

La réponse est plus compliquée

Voyons ce que proposent les industriels

Pour une assiette plate standard, un diamètre de 26 à 27 cm convient pour les lave-vaisselles. Pour les petites assiettes, la taille est de 22 à 24 cm. Les assiettes creuses font 22 à 23cm.

On trouve de grandes assiettes telle que ci-dessous de 27,5 cm au prix de 8,95€

Assiette Degrenne 27,5cm

ou des assiettes de 31,5cm qualifiées d’assiettes de présentation, de grand plat ou de plat à tarte telle que celle-ci affichée au prix de 229€

     Plat-le-brésil d’Haviland 31,5cm

Ou ci-dessous cette assiette de présentation Bernardeaud ultra-plate de 31cm au prix de 249€

Benardeaud AuxOiseaux 31cm

Mieux encore, la coupe de luxe de 41cm Raynaud de Limoges au prix de 865€

Grande coupe Olivier Maillefer 41cm

Et enfin la pièce de collection en porcelaine de Sèvres. Cadeau royal français du XVIIIème siècle au prix de 7000€! mais là on n’est plus dans l’assiette, on est dans la vitrine…!

Assiette en porcelaine de Sèvres

Pourquoi cet écart de prix? A première vue, la première est en faïence, les autres sont en porcelaine. Il y a d’autres critères, l’épaisseur, le décor (industriel ou peint à la main), le type de porcelaine, les finitions, la signature, la rareté, la pièce de collection…

Voyons maintenant ce que proposent les artisans

Le magazine « La revue de la CERAMIQUE et du VERRE » de mai-juin 2025, met à l’honneur la céramiste Perrine POTTIEZ . Ses créations reçoivent les faveurs de Flavien GUARATO chef du Mertensia à Lyon.

Perrine récolte elle-même ses terres en arpentant la région autour de Toulouse. Elle prépare ses pâtes et y dépose de la sigillée, souvent à base de cendres. La cuisson au bois cède désormais la place au gaz à 1150°C. Elle n’émaille pas ses pièces, pratique des dépôts de cendres. Résultat: des couleurs telluriques qui rappellent la nature, les sous-bois, les bords de ruisseaux.

Dans son mensuel de mars-avril 2025, la même revue présente Marion GRAUX. Elle crée des assiettes roses pour Hélène DARROZE, célèbre cheffe étoilée de plusieurs restaurants.

Marion vit à Port-Louis dans le Morbihan. Elle crée ses émaux, les dépose sur des grès cuits à haute température en four électrique. Elle s’est très jeune prise d’affection pour la couleur rose qui orne son parcours.

Voyons enfin ce qu’en pensent les chefs

Découvrons la vision des arts de la table des chefs Eric Trochon, Christophe Raoux, Julien Hennote, Pierre Hermé et Christian Le Squer.

Ci-dessous des extraits de cet article :

Eric Trochon a la nostalgie des tables de son enfance, entre la porcelaine et l’argenterie des grandes occasions. Ce chef recherche l’harmonie, le confort et l’ergonomie dans un « mix and match » de matières hétéroclites. En bon esthète, il aime marier pièces en terre, en céramique, en porcelaine… et mêler le contemporain à des produits chinés.

Christophe Raoux, chef exécutif de l’école Ducasse estime que les tables ont une âme, le nouveau dressage est épuré pour magnifier le prestige des plats.

Pour Julien Hennote, les arts de la table sont le reflet d’une parfaite cohérence entre le lieu et l’esprit de la cuisine. Sa vaisselle de prédilection est contemporaine, sobre et blanche.

Pierre Hermé n’hésite pas à marier pièces blanches épurées et objets très décorés, avec toujours, une préférence pour l’artisanat français et japonais.

Pour Christian Le Squer, une belle table est avant tout une histoire d’émotion. La vaisselle est partie prenante de la beauté des plats et doit accompagner la création et la dégustation avec cohérence et esthétisme. Adepte du blanc, le chef aime marier le neutre avec les explosions de couleurs, les pièces familiales avec des objets contemporains rapportés de ses voyages.

Quelles conclusions en tirer ?

Pour dresser une belle table, je retiens qu’il faut savoir marier des pièces simples à des objets plus sophistiqués ou hétéroclites.

Pour le potier, c’est laisser libre cours à son imagination, à sa sensibilité. Peu importe la forme, la taille, la couleur de ses pièces. Ce qui compte c’est d’exprimer à travers ses assiettes sa propre vision de la table.

Car, une assiette, c’est fait avant-tout pour mettre en valeur le met qu’on se prépare à déguster.